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Abstract

Set Cover problems are of core importance in many applications. In recent re-
search, the “red-blue variants” where blue elements all need to be covered whereas
red elements add further constraints on the optimality of a covering have received
considerable interest. Application scenarios range from data mining to interference
reduction in cellular networks. As a rule, these problem variants are computation-
ally at least as hard as the original set cover problem. In this work we investigate
whether and how the well-known consecutive ones property, restricting the structure
of the input sets, makes the red-blue covering problems feasible. We explore a sharp
border between polynomial-time solvability and NP-hardness for these problems.
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1 Introduction

Motivation and Definitions. Covering problems are of central importance
in algorithm theory and combinatorial optimization. Two of the most promi-
nent examples for this type of problem are Set Cover and Hitting Set.
In both problems, the input consists of a set S and a collection C of subsets
of S. For Set Cover, one tries to find a minimum-size subcollection C ′ ⊆ C
that covers S, that is, it satisfies

⋃

C∈C′ C = S. For Hitting Set, one tries
to find a minimum-size subset S ′ ⊆ S that covers C, that is, each set in C
contains at least one element from S ′. It is well-known that both problems are
equivalent in this general setting [3]. Due to their practical importance, there
is a lot of literature on Set Cover and Hitting Set [6,8]. Set Cover
is NP-complete and only allows for a logarithmic-factor polynomial-time ap-
proximation [14]. It is parameterized intractable (that is, W[2]-complete) with
respect to the parameter “solution size” [12]. Due to the equivalence between
Set Cover and Hitting Set, these results also apply to Hitting Set. 4

Generalizations as well as restrictions of Set Cover and Hitting Set played
a prominent role in algorithmics. In this work, we are going to study two
covering problems with an important generalization called “red-blue” together
with an important restriction called “consecutive ones property” which we
apply to both problems.

The first covering problem is called Minimum Degree Hypergraph (MDH)
and is defined as follows:

1 A preliminary version of this paper appeared under the title “Minimum Mem-
bership Set Covering and the Consecutive Ones Property” in the proceedings of
the 10th Scandinavian Workshop on Algorithm Theory (SWAT 2006), held in Riga,
Latvia, July 2006 [10]. Note that we changed the title due to significant changes in
comparison with the conference version. First, a dynamic programming algorithm
for Minimum Degree Hypergraph (we called this problem Red-Blue Hitting
Set in the preliminary version) with consecutive ones property has been replaced by
a solution based on integer linear programming. Moreover, a dynamic programming
algorithm for Red-Blue Set Cover with consecutive ones property has been
added. Second, we added further NP-completeness results concerning Red-Blue
Set Cover with consecutive ones property. Finally, in accordance with previous
literature, the meanings of red and blue sets in instances of Minimum Degree
Hypergraph have been interchanged.
2 Supported by the Deutsche Forschungsgemeinschaft, Emmy Noether research
group PIAF (fixed-parameter algorithms), NI 369/4.
3 Supported by the Deutsche Telekom Stiftung.
4 Generally, a set cover problem, where elements have to be covered by sets, can
be equivalently formulated as a hitting set problem, where sets have to be covered
by elements, by simply exchanging elements and sets.
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Minimum Degree Hypergraph (MDH)
Input: A set S, two collections Cblue and Cred of subsets of S, and a non-
negative integer k.
Task: Determine if there exists a subset S ′ ⊆ S such that

∀C ∈ Cblue : |S ′ ∩ C| ≥ 1, and ∀C ∈ Cred : |S ′ ∩ C| ≤ k.

Feder et al. [13] introduced this problem and gave a factor-O(log |S|) polynomi-
al-time approximation algorithm for it. Motivated by applications concerning
interference reduction in cellular networks, Kuhn et al. [22] introduced the
Minimum Membership Set Cover problem, a special case of MDH. Here,
given a set S and a collection C of subsets of S, one wants to determine
a subcollection C′ ⊆ C that covers S but where the maximum number of
occurrences of each element from S in the subsets in C′ shall be minimized.
MMSC is the special case of MDH where Cblue = Cred.

Our second covering problem within the “red-blue setting”, the so-called Red-
Blue Set Cover (RBSC) problem, has been introduced by Carr et al. [7]
and is defined as follows.

Input: Two disjoint sets B (blue elements) and R (red elements), a collec-
tion C of subsets of B ∪R, and a nonnegative integer k.
Task: Determine if there exists a subcollection C′ ⊆ C such that

∀b ∈ B ∃C ∈ C′ : b ∈ C, and |(
⋃

C∈C′

C) ∩R| ≤ k.

Set Cover is the special case of RBSC where each set in C contains exactly
one red element and no red element is contained in more than one set. Carr
et al. provided several natural application scenarios such as data mining for
RBSC and several positive and negative results concerning the polynomial-
time approximability of RBSC. A further problem connected to RBSC is
the Generalized Venetian Routing problem dealing with wavelength
routing in optical networks [5].

To emphasize the close relationship between RBSC and MDH, we present
the following, equivalent definition of RBSC 5 . This definition will be made
use of in the remainder of this paper.

Red-Blue Set Cover (RBSC)
Input: A set S, two collections Cblue and Cred of subsets of S, and a non-
negative integer k.

5 This equivalence can be seen, similar to the equivalence between Set Cover and
Hitting Set, by exchanging elements and sets. The sets B and R in the original
definition correspond to the collections Cblue and Cred in our equivalent formulation.
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Fig. 1. Example for the C1P: The matrix on the left has the C1P, because by
permuting its columns (labeled with A–D) one can obtain the matrix shown in the
middle where the ones in each row appear consecutively. The matrix on the right,
in contrast, does not have the C1P [33].

Task: Determine if there exists a subset S ′ ⊆ S such that

∀C ∈ Cblue : |S ′ ∩ C| ≥ 1, and |{C ∈ Cred | S
′ ∩ C 6= ∅}| ≤ k.

The difference between RBSC and MDH is that in the case of RBSC the
number of red sets containing elements of the solution set is restricted, whereas
in the case of MDH the maximum number of elements of a red set being
contained in the solution set is restricted.

As to the consecutive ones property (C1P), there is a long history of re-
search [35,33,25,26,24,30,23,32,9,11]. Applied to instances of the problems
MDH and RBSC, the C1P means that the elements of S can be ordered
in a linear arrangement such that each set in Cblue and Cred contains only a
whole “chunk” of that arrangement, that is, without any gaps. The name “con-
secutive ones” refers to the fact that one may think of an MDH or RBSC
instance as a coefficient matrix M where the elements in the ground set cor-
respond to columns and the sets in the subset collection correspond to rows;
an entry is 1 if the respective element is contained in the respective set, and 0,
otherwise. If an instance has the C1P, then the columns of M can be permuted
in such a way that the ones in each row appear consecutively as Figure 1 illus-
trates. Set Cover instances with the C1P are solvable in polynomial time,
a fact which is made use of in many practical applications [24,23,26,30,35].
In applications of MDH or RBSC with geographic background (such as the
interference reduction considered by Kuhn et al. [22]), the problem instances
may have the C1P or be “close” to the C1P [23,24]. Katz et al. [21] recently
considered geometric Set Cover problems that are also related to covering
problems under the C1P restriction.

Contributions. Seemingly for the first time, this work brings together the
concepts of “red-blue” and the C1P, that is, we investigate the time complexity
of the two red-blue covering problems with the C1P. The formulations of
MDH and RBSC open a wide field of natural investigations concerning the
C1P, the point being that the C1P may apply to either Cblue, Cred, Cblue ∪ Cred,
or none of Cblue and Cred.
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On the positive side, we show polynomial-time solvability for MDH and
RBSC in the case that Cblue ∪ Cred possesses the C1P. In addition, we provide
a simple greedy algorithm that approximates RBSC with Cblue ∪ Cred having
the C1P to an additive term of one. On the negative side, we prove several
NP-completeness results in case that at most one of Cred and Cblue has the C1P.
More specifically, we indicate several sharp borders between polynomial-time
solvability and NP-completeness of MDH depending on the subset sizes (the
main point being, roughly speaking, a distinction between subset sizes two
and three, see Corollary 8). Moreover, we show that if at most one of Cred
and Cblue has the C1P, then also RBSC becomes NP-complete.

2 Preliminaries and Basic Observations

Formally, the consecutive ones property is defined as follows.

Definition 1 Given a set S = {s1, . . . , sn} and a collection C of subsets of S,
the collection C is said to have the consecutive ones property (C1P) if there
exists a linear order ≺ on S such that for every set C ∈ C and si ≺ sk ≺ sj,
it holds that si ∈ C ∧ sj ∈ C ⇒ sk ∈ C.

Given a subset system (S, C), the linear order ≺ in Definition 1 can be found
in O(|S|+ |C|+

∑

C∈C |C|) time [4,19]. Therefore, in all our algorithmic results
except Theorem 6 we can without loss of generality assume that the elements
of the set S in the input are already sorted according to the order ≺.

The following simple observation is useful for our NP-completeness proofs.

Observation 1 Given a set S = {s1, . . . , sn} and a collection C of subsets
of S such that all sets in C are mutually disjoint, the collection C has the
C1P.

We say that a set S ′ ⊆ S has the minimum overlap property if each set
in Cblue contains at least one element from S ′. Moreover, for a given in-
stance (S, Cblue, Cred, k) of MDH and RBSC, we will call k the maximum
overlap and the maximum containment, respectively. A set S ′ has the maxi-
mum overlap property if each set in Cred contains at most k elements from S ′.
Analogously, a set S ′ has the maximum containment property if at most k sets
in Cred contain elements from S ′.

As it is easy to see that the problems considered in this paper are contained
in NP, all our NP-completeness proofs will only show the NP-hardness of the
corresponding problems.
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We continue with two observations concerning MDH without C1P. Being a
generalization of Set Cover, MDH is of course NP-complete in general.
This even holds for a rather strongly restricted variant:

Observation 2 MDH is NP-complete even if |Cred| = 1 and ∀C ∈ Cblue :
|C| = 2.

The observation can be seen by a reduction from the NP-complete Vertex
Cover problem [16]: Given a graph G = (V,E) and a nonnegative integer k,
this problem asks to find a size-k subset V ′ ⊆ V such that for every edge in E,
at least one of its endpoints is in V ′. Given an instance (G, k) of Vertex
Cover, construct an instance of MDH by setting S := V , Cblue := E, Cred :=
{V } (that is, the collection Cred consists of one set containing all elements
of S), and setting the maximum overlap equal to k. The correctness of this
construction is straightforward.

Polynomial-time solvable instances of MDH arise when the cardinalities of all
sets in the collection Cblue are restricted to 2 and the maximum overlap k = 1:

Observation 3 MDH can be solved in polynomial time if k = 1 and ∀C ∈
Cblue : |C| ≤ 2.

This observation can be shown by stating the restricted MDH instance equiv-
alently as a 2-Sat problem; 2-Sat is well-known to be solvable in linear
time [1]. For the reduction, construct the following instance F of 2-Sat for a
given instance (S, Cblue, Cred, 1) of MDH:

• For each element si ∈ S, where 1 ≤ i ≤ n, F contains the variable xi.
• For each set {si1 , si2} ∈ Cblue, F contains the clause (xi1 ∨ xi2).
• For each set {si1 , . . . , sid} ∈ Cred, F contains d(d−1)/2 clauses (¬xia ∨¬xib)

with 1 ≤ a < b ≤ d.

Corollary 1 MDH can be solved in polynomial time if ∀C ∈ Cblue ∪ Cred :
|C| ≤ 2.

To see this, first note that if k ≥ 2 then the corresponding MDH instance
is trivially solvable by setting S ′ := S, because then no set in Cred has more
than k elements in common with the solution set S ′. Hence, we only need to
deal with the case k = 1, for which the claim is true by Observation 3.

Note that the restrictions imposed by Observation 3 and Corollary 1 are
“tight.” If we allow Cblue to contain cardinality-3 subsets, then MDH becomes
NP-complete (Theorems 9 and 11). If Cred contains cardinality-3 subsets and
the maximum overlap is 2, then we can also prove the NP-completeness (The-
orems 10 and 12).
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3 Minimum Degree Hypergraph and Red-Blue Set Cover with
C1P

In this section, we make the requirement that C := Cblue ∪ Cred in a given
instance (S, Cblue, Cred, k) of MDH and RBSC obeys the C1P and call the
resulting problems “MDH with C1P” and “RBSC with C1P.”

By using known linear programming techniques, MDH with C1P can be solved
in polynomial time; we will describe this approach in Sect. 3.1, followed by
a much simpler greedy approximation algorithm in Sect. 3.2. The polynomial
time solvability of RBSC with C1P is more difficult to see; for this problem
we will present an exact polynomial time dynamic programming algorithm in
Sect. 3.3.

To simplify our subsequent considerations, we assume that the elements in
S = {s1, . . . , sn} are sorted such that all subsets in Cblue and Cred have the
C1P. This sorting can be done in O(|S|+ |C|+

∑

C∈C |C|) time [4,19]. For each
subset C ∈ Cred ∪ Cblue, its left index l(C) is defined as min{i | si ∈ C} and its
right index r(C) is defined as max{i | si ∈ C}.

3.1 Linear Programming for Minimum Degree Hypergraph

Here we will first give a formulation of MDH with C1P as an integer linear
program (ILP) and then explain two ways to solve this ILP in polynomial
time. Refer to Schrijver [31] for basics about (integer) linear programming as
we will need them here.

Given an instance of MDH with C1P, we introduce for each element si ∈
S a variable xi which, if set to 1, expresses that si has to be part of an
optimal solution. Every integral feasible solution for the following integer linear
program (ILP) then obviously yields a solution for MDH with C1P:

−xl(C) − xl(C)+1 − · · · − xr(C) ≤ −1 ∀C ∈ Cblue

xl(C) + xl(C)+1 + · · ·+ xr(C) ≤ k ∀C ∈ Cred

xi ∈ {0, 1} ∀i ∈ {1, . . . , |S|}

Note that the coefficient matrix of this ILP has the C1P, that is, every row
of the matrix contains only either 0’s and 1’s or 0’s and −1’s, and in every
row the non-zero entries appear consecutively. Now consider the relaxation
of the ILP, that is, replace the constraints xi ∈ {0, 1} ∀i ∈ {1, . . . , |S|} by
−xi ≤ 0 ∀i ∈ {1, . . . , |S|} and xi ≤ 1 ∀i ∈ {1, . . . , |S|}.

7



Originally published in Journal of Discrete Algorithms, 6(3):393–407. Elsevier B. V, 2008.

As we will see, the resulting system of constraints has the property that its
coefficient matrix is totally unimodular, which means that every square sub-
matrix has determinant 0, 1, or −1. The following theorem of Hoffman and
Kruskal [18] shows that if the relaxed linear program has a feasible solution,
then it has also an integral feasible solution. Moreover, such an integral feasi-
ble solution can easily be found in polynomial time, because every corner of
the polyhedron given by the inequality system is integral.

Theorem 2 ([18]) Let A be an m × n integral matrix. Then the polyhedron
defined by Ax ≤ b, x ≥ 0 is integral for every integral vector b ∈ N

m if and
only if A is totally unimodular.

In order to see that the coefficient matrix is always totally unimodular, con-
sider the following characterization of totally unimodular matrices by Ghouila-
Houri [17].

Theorem 3 ([17]) An m × n matrix A with entries 0, 1,−1 is totally uni-
modular if and only if each collection of columns from A can be split into two
partitions such that in each row the sum of the entries of the first partition
and the sum of the entries of the second partition differ by at most 1.

The coefficient matrix of our system of constraints clearly fulfills the conditions
of Theorem 3: Take an arbitrary collection of columns from the coefficient
matrix and order them according to the C1P. Splitting the columns by putting
every second column, starting with the first, into one partition and every
second column, starting with the second, into the other partition, leads to a
splitting as required in Theorem 3. Solving MDH with C1P in this way needs
O(|S|5 log(k)) arithmetic operations on numbers that can be encoded with
O(|S|2 log k) bits [20].

So far, only the fact that the coefficient matrix is totally unimodular was
used. However, it is known that an ILP whose coefficient matrix has the C1P
can be solved even faster by transforming it into an edge-weighted graph
and solving a shortest path problem on this graph. To this end, replace the
n variables x1, . . . , xn by n + 1 variables y0, . . . , yn such that xi = yi− yi−1 for
all i ∈ {1, . . . , n}, which yields the following inequation system.

yl(C)−1 − yr(C) ≤ −1 ∀C ∈ Cblue

−yl(C)−1 + yr(C) ≤ k ∀C ∈ Cred

−yi + yi−1 ≤ 0 ∀i ∈ {1, . . . , |S|}

yi − yi−1 ≤ 1 ∀i ∈ {1, . . . , |S|}

In this coefficient matrix every row contains exactly one 1 and one −1 and,
hence, can be interpreted as a directed edge in a graph G whose vertices
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correspond to the variables y0, . . . , yn. More precisely, let G = (V,E) be the
directed edge-weighted graph with

V = {vi | the ILP contains a variable yi},

E = {(vi, vj) | the ILP contains an inequation whose left side is −yi + yj},

where every edge e has a weight that is equal to the right side of the inequation
corresponding to e in the ILP.

Now consider the following statement known as Farkas’ Lemma (see Schri-
jver [31]).

Lemma 4 Let A ∈ R
m×n be a matrix and b ∈ R

m be a vector. Then the
inequation system Ay ≤ b has a solution y ∈ R

n if and only if the inequation
system zTA = (0n)T, zTb < 0, z ≥ 0m has no solution z ∈ R

m.

Interpreting A as the incidence matrix of the graph G defined above, Farkas’
Lemma says that the given MDH instance is a yes-instance iff G contains no
directed cycle whose edge weight sum is negative. To see this, observe that
every positive component of the solution vector z corresponds to an edge of
such a cycle: the constraint zTA = (0n)T enforces that for every vertex in G
the same number of ingoing and outgoing edges have to be selected. By using
the Bellmann-Ford-Moore-Algorithm [8], it can be decided in O(|V | · |E|) time
if G contains such a negative cycle, and, hence, MDH with C1P can be decided
in O(|S| · (|Cblue|+ |Cred|+ 2 · |S|)) = O(|S|3) time.

If G contains no cycle with negative edge weight sum and a solution for the
ILP shall be constructed (that is, the values of the yi shall be computed), then
just set y0 to 0 and yi, i ∈ {1, . . . , n}, to the length of the shortest path in G
from v0 to vi. Because G contains no negative cycle, these shortest paths are
all well-defined. It is easy to see that this solution satisfies all inequalities of
the ILP. The shortest paths can be computed by the Bellmann-Ford-Moore-
Algorithm in O(|S|3) time.

Altogether, we summarize our observations in the following theorem.

Theorem 5 MDH can be solved in O(|S|·(|Cblue|+|Cred|+|S|)) = O(|S|3) time
if Cblue ∪ Cred has the C1P.

3.2 Greedy Algorithm for Minimum Degree Hypergraph

As we have seen in the previous section, MDH with C1P can be solved in
polynomial time with an ILP approach. By way of contrast, here we describe
a simple greedy algorithm for MDH with C1P that has an absolute approx-
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imation guarantee of additive term “+1.” To this end, we consider the op-
timization version of MDH: Given S, Cblue, and Cred, find a subset S ′ ⊆ S
with S ′ ∩ C 6= ∅ for all C ∈ Cblue which minimizes maxC′∈Cred{|C

′ ∩ S ′|}.

The idea of the greedy algorithm is to search in each step for the set C ∈ Cblue
with the leftmost right index r(C) such that no element of C is contained in
the current solution set, and to add the rightmost column of C to the solution:

01 S ′ ← ∅, C′
blue
← Cblue

02 while C′
blue
6= ∅

03 C ← set from C′
blue

with minimum right index
04 S ′ ← S ′ ∪ {sr(C)}
05 C′

blue
← C′

blue
\ {C ∈ C′

blue
: C ∩ S ′ 6= ∅}

06 return S ′

Theorem 6 For MDH with C1P, the greedy algorithm approximates an op-
timal solution within an additive term of one in O(|S| · |Cblue|) time, provided
that the elements in S are sorted such that all subsets in Cblue have the C1P.

PROOF. Obviously, the output S ′ of the greedy algorithm has the minimum
overlap property. It is also clear that all steps of the algorithm can be done in
O(|S| · |Cblue|) time altogether. It remains to determine maxC′∈Cred{|C

′ ∩ S ′|}.

Let Cmax denote one subset in Cred with |Cmax ∩ S ′| = maxC′∈Cred{|C
′ ∩ S ′|}.

Due to the C1P, all sets C chosen in step 03 are pairwise disjoint, and,
hence, the set Cmax contains at least |Cmax ∩ S ′| − 1 pairwise disjoint sets
from Cblue as subsets, implying that any solution for this instance has to
contain at least |Cmax ∩ S ′| − 1 elements from Cmax in order to satisfy the
minimum overlap property for these pairwise disjoint Cblue-sets. Therefore,
|Cmax ∩ S ′opt| ≥ |Cmax ∩ S ′| − 1 for any optimal solution S ′opt. 2

3.3 Dynamic Programming for Red-Blue Set Cover

In the case of RBSC with C1P, we do not know an ILP formulation whose
coefficient matrix is totally unimodular. We now present a polynomial-time
dynamic programming algorithm that solves the optimization version of Red-
Blue Set Cover with C1P: Given S, Cblue, and Cred, find a subset S ′ ⊆ S
with S ′ ∩ C 6= ∅ for all C ∈ Cblue which minimizes |{C ∈ Cred | S

′ ∩ C 6= ∅}|.

We assume that the sets in Cblue are ordered according to their left indices and
denote them with B1, . . . , B|Cblue|; the sets of Cred are ordered analogously and
denoted with R1, . . . , R|Cred|. If a set in Cblue is a superset of another set in Cblue,
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it can be removed. Therefore, for any two sets Bi, Bj ∈ Cblue it holds that

l(Bi) < l(Bj)⇔ r(Bi) < r(Bj).

Given a subset S ′ ⊆ S, we denote with w(S ′) the number of sets from Cred
that are covered by S ′.

The idea of the dynamic programming algorithm is to compute so-called opti-
mal partial solutions Sopt(i1, i2, j). Each optimal partial solution Sopt(i1, i2, j)
has the following properties:

(1) Sopt(i1, i2, j) ⊆ {s1, . . . , si1},
(2) Sopt(i1, i2, j) covers all sets B1, . . . , Bj,
(3) if i2 > 0, then Sopt(i1, i2, j) contains at least one element from {si2 , . . . , sn}

(where n := |S|), and
(4) the cost w(Sopt(i1, i2, j)) is minimum under all subsets of S that have the

first three properties.

A subset of S that has the first three properties is called a feasible partial
solution.

The algorithm uses a three-dimensional table Sopt(i1, i2, j) with 1 ≤ i1 ≤
n, 0 ≤ i2 ≤ n, and 1 ≤ j ≤ |Cblue| for storing optimal partial solutions,
and a table Wopt(i1, i2, j) of the same size where the cost of every optimal
partial solution is stored. Then, the entry Sopt(n, 0, |Cblue|) contains an optimal
solution for the RBSC instance.

The two tables are filled with three nested loops, iterating over i1, i2, and j.
To compute table entries Sopt(i1, i2, j),Wopt(i1, i2, j) with i1 = 1 is simple. All
other entries are computed as follows: If l(Bj) > i1 or i2 > i1, then there
is no partial solution Sopt(i1, i2, j), and Wopt(i1, i2, j) is set to ∞. Otherwise,
we consider two cases: the optimal partial solution contains si1 or not. (Note
that if i2 = i1, then all feasible partial solutions have to contain si1 .) In the
first case, the optimal partial solution Sopt(i1, i2, j) can only contain elements
from {s1, . . . , si1−1}, and, hence, Sopt(i1, i2, j) = Sopt(i1−1, i2, j). In the second
case, the optimal partial solution Sopt(i1, i2, j) is computed as follows: By
choosing si1 , property (3) is clearly obtained, because we can assume that i2 ≤
i1. Moreover, all sets in Cblue that contain si1 are covered by si1 . Therefore, in
order to obtain property (2), it remains to cover those sets Bp ∈ {B1, . . . , Bj}
that have r(Bp) < i1. Hence, adding si1 to an optimal partial solution Sopt(i1−
1, i′2, j

′), where i′2 is chosen from {0, . . . , i2} and j′ is the maximum possible
index such that r(Bj′) < i1, yields an optimal partial solution Sopt(i1, i2, j).
The value for i′2 has to be chosen such that W (i1, i2, j) = W (i1 − 1, i′2, j

′) +
|Cred(i1)| − |X| is minimum, where Cred(i1) denotes the sets from Cred that are
covered by si1 and X denotes the sets from Cred that are covered by both si1

and Sopt(i1 − 1, i′2, j
′).
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Before showing the details of our algorithm and proving its correctness, we
introduce some more notations:

Cred(i) := {C ∈ Cred | si ∈ C}, 1 ≤ i ≤ n, and

C←
red

(i) := {C ∈ Cred | si ∈ C ∧ si−1 ∈ C}, 1 < i ≤ n.

With R←(i, k) we denote the kth set from C←
red

(i), where we assume that
the sets C ∈ C←

red
(i) are ordered according to l(C). The following pseudo

code shows how an optimal partial solution Sopt(i1, i2, j) together with its
cost Wopt(i1, i2, j) is computed for i1 > 1.

01 if (l(Bj) > i1) ∨ (i2 > i1) then
02 Wopt(i1, i2, j)←∞, Sopt(i1, i2, j)← ∅, break
03 Wopt(i1, i2, j)← Wopt(i1 − 1, i2, j) // Lines 3–4: partial solution not containing si1

04 Sopt(i1, i2, j)← Sopt(i1 − 1, i2, j)
05 j′ ← max{p ∈ {1, . . . , j} | r(Bp) < i1} // Lines 5–14: partial sol. containing si1

06 x← Wopt(i1 − 1, 0, j′) + |Cred(i1)|
07 if x < Wopt(i1, i2, j) then
08 Wopt(i1, i2, j)← x
09 Sopt(i1, i2, j)← Sopt(i1 − 1, 0, j′) ∪ {si1}
10 for k = 1 to |C←

red
(i1)| do

11 x← Wopt(i1 − 1, l(R←(i1, k)), j′) + |Cred(i1)| − k
12 if x < Wopt(i1, i2, j) then
13 Wopt(i1, i2, j)← x
14 Sopt(i1, i2, j)← Sopt(i1 − 1, l(R←(i1, k)), j′) ∪ {si1}

Theorem 7 RBSC can be solved in O(|Cblue| · |Cred| · |S|
2) time if Cblue ∪ Cred

has the C1P.

PROOF. We show the correctness of the pseudo code shown above. In lines 3–
4 the algorithm searches for an optimal partial solution Sopt(i1, i2, j) that does
not contain si1 . Lines 5–14 handle the case that the optimal partial solu-
tion Sopt(i1, i2, j) contains si1 . Clearly the procedure outputs a feasible partial
solution, and it is easy to verify that the value of Wopt(i1, i2, j) computed by
the procedure upper-bounds the cost of the partial solution Sopt(i1, i2, j) com-
puted by the procedure. It remains to show that the value of Wopt(i1, i2, j)
computed by the procedure equals the actual cost of an optimal partial solu-
tion in the case that the optimal partial solution contains si1 .

To this end, let Sopt(i1, i2, j) be an optimal partial solution where si1 ∈
Sopt(i1, i2, j). Moreover, let S ′ := Sopt(i1, i2, j) \ {si1}, let j′ := max{p ∈
{1, . . . , j} | r(Bp) < i1}, and let i′ := max{q ∈ {1, . . . , n} | sq ∈ S ′}. We
distinguish two cases.

12
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Case 1: For all C ∈ Cred(i1) it holds that si′ /∈ C. Then Wopt(i1, i2, j) =
w(S ′) + |Cred(i1)|. The set S ′ must have the following properties: S ′ consists
of elements from {s1, . . . , si1−1}, and S ′ covers all sets B1, . . . , Bj′ . Under
all subsets of S having these two properties, the set Sopt(i1 − 1, 0, j′) is, by
definition, the one with minimum cost, and, hence, choosing Sopt(i1, i2, j) =
Sopt(i1−1, 0, j′)∪{si1} is optimal. In this case, the procedure finds the correct
value of Wopt(i1, i2, j) in lines 6–9.

Case 2: There exists a k ∈ {1, . . . , |C←
red

(i1)|} such that R←(i1, k) ∩ S ′ 6= ∅.
We assume that k is maximum under this property. Due to the order of
the sets in Cred, we have R←(i1, k

′) ∩ S ′ 6= ∅ for all k′ < k, and, hence,
Wopt(i1, i2, j) = w(S ′) + |Cred(i1)| − k. The set S ′ must have the follow-
ing properties: S ′ consists of elements from {s1, . . . , si1−1}, and S ′ covers
all sets B1, . . . , Bj′ . Moreover, the maximum index i′ of an element in S ′

has to satisfy i′ ≥ l(R←(i1, k)), because otherwise R←(i1, k) would not be
covered by S ′. Under all subsets of S having these three properties, the
set Sopt(i1 − 1, l(R←(i1, k)), j′) is the one with minimum cost, and, hence,
choosing Sopt(i1, i2, j) := Sopt(i1− 1, l(R←(i1, k)), j′)∪{si1} is optimal. In this
case, the procedure finds the correct value of Wopt(i1, i2, j) in lines 10–14.

It remains to show the running time. The table size is O(|S|2 · |Cblue|), and
to compute an entry of the table, at most O(|Cred|) other entries have to
be considered in lines 10–14. Line 5 can be executed in constant time if, in
a preprocessing step (which can be implemented similar to bucket sort and
needs O(|Cblue| + |S|) time), for every possible value of i1 the corresponding
value of j′ is computed and stored in an extra table. This yields the claimed
running time. 2

4 Minimum Degree Hypergraph and Red-Blue Set Cover with Par-
tial C1P

Whereas the C1P case always leads to polynomial-time solvability, in case of
only partially holding C1Ps we typically face NP-hardness as shown in this
section.

4.1 Minimum Degree Hypergraph with Partial C1P

In this section we prove that MDH remains NP-complete even under the re-
quirement that either Cblue or Cred is to have the C1P. To this end, we give
reductions from the following restricted variant of the Satisfiability prob-
lem:

13
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Restricted 3-Sat (R3-Sat)
Input: An n-variable, m-clause Boolean formula F in conjunctive normal
form where each variable xi, 1 ≤ i ≤ n, appears at most three times, each
literal appears at most twice, and each clause contains at most three literals.
Task: Determine if there exists a satisfying truth assignment for F .

It is well-known that R3-Sat is NP-complete (e.g., see [28, p. 183]). 6 Without
loss of generality, we assume that no variable appears in F solely positively or
negatively, and F contains no singleton clause.

Our reductions show the NP-completeness of Minimum Degree Hyper-
graph variants that have, apart from the C1P for Cblue or Cred, several further
restrictions. In order to emphasize the correlation between the hardness of the
problem and the value of k and the subset sizes in Cblue and Cred, we sum-
marize some of the results in the following statement, which is a corollary of
Observations 2 and 3, Corollary 1, and Theorems 9, 10, 11, and 12.

Corollary 8 MDH is NP-complete even if all of the following restrictions
apply:

(1) One of the collections Cblue and Cred has the consecutive ones property,
(2) k = 1, and
(3) ∀C ∈ Cblue : |C| ≤ 3 and ∀C ∈ Cred : |C| ≤ 2.

However, replacing restriction (2) by k = 0, replacing restriction (3) by ∀C ∈
Cblue : |C| ≤ 2, or replacing restriction (3) by ∀C ∈ Cred : |C| ≤ 1 leads to
polynomial-time solvability.

MDH is NP-complete even if all of the following restrictions apply:

(1) One of the collections Cblue and Cred has the consecutive ones property,
(2) k = 2, and
(3) ∀C ∈ Cblue : |C| ≤ 2 and ∀C ∈ Cred : |C| ≤ 3.

However, replacing restriction (2) by k ≤ 1, replacing restriction (3) by ∀C ∈
Cblue : |C| ≤ 1, or replacing restriction (3) by ∀C ∈ Cred : |C| ≤ 2 leads to
polynomial-time solvability.

4.1.1 Consecutive Ones Property for Cblue

The following two theorems (Theorems 9 and 10) show that the requirement
of Cblue obeying the C1P does not make MDH tractable. The theorems com-

6 Note that it is essential for the NP-completeness of R3-Sat that the Boolean for-
mula F may contain size-2 clauses, otherwise, the problem is solvable in polynomial
time [28].
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plement each other in the sense that they impose different restrictions on the
cardinalities of the sets Cblue and Cred; Theorem 9 needs size-3 sets in Cblue and
size-2 sets in Cred (the reduction encodes clauses of a given R3-Sat instance
in Cblue) while the converse holds true for Theorem 10 (the reduction encodes
clauses in Cred).

Theorem 9 MDH is NP-complete even if all of the following restrictions
apply:

(1) The collection Cblue has the consecutive ones property,
(2) k = 1,
(3) ∀C ∈ Cblue : |C| ≤ 3 and ∀C ∈ Cred : |C| ≤ 2, and
(4) ∀s ∈ S : |{C ∈ Cblue | s ∈ C}| = 1 and |{C ∈ Cred | s ∈ C}| ≤ 2.

PROOF. We prove the theorem by a reduction from R3-Sat. Given an
m-clause Boolean formula F that is an instance of R3-Sat, construct the
following instance (S, Cblue, Cred, k) of MDH:

• The set S consists of the elements s1
1, s

2
1, s

3
1, . . . , s

1
m, s2

m, s3
m. The element si

j

corresponds to the i-th literal in the j-th clause of F . If the j-th clause has
only two literals, then S contains only s1

j and s2
j .

• Each set in Cblue corresponds to a clause in F , that is, for the i-th clause
in F , we add {s1

i , s
2
i , s

3
i } to Cblue if it contains three literals and {s1

i , s
2
i } if it

contains two literals.
• For all variables x and for all pairs of literals l1 = x, l2 = ¬x in F : If l1 is

the i-th literal in the j-th clause and l2 is the p-th literal in the q-th clause
of F , then Cred contains the set {si

j, s
p
q}.

• The maximum overlap k is set to one.

The construction is illustrated in Figure 2. It is easy to see that, by the defini-
tion of R3-Sat, the constructed instance satisfies the restrictions claimed in
the theorem; note that Cblue has the consecutive ones property due to Obser-
vation 1. It remains to be shown that the constructed instance of MDH has
a solution iff F has a satisfying truth assignment T .

“⇒” Assume that the constructed instance of MDH has a solution set S ′.
Let T be a truth assignment such that, for every si

j ∈ S ′, the variable rep-
resented by si

j is set to true if the literal represented by si
j is positive, and

false otherwise. This truth assignment is well defined because S ′ must have
the maximum overlap property with k = 1—it therefore cannot happen that
two elements si

j, s
p
q ∈ S ′ correspond to different literals of the same variable.

To show that T constitutes a satisfying truth assignment for F , observe that,
for each clause of F , at least one element from S ′ corresponds to a literal in this
clause because S ′ has the minimum overlap property. On the one hand, if this
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F = (x1 ∨ x2 ∨ ¬x3)

∧ (x3 ∨ x4)

∧ (¬x1 ∨ ¬x2)

∧ (¬x1 ∨ ¬x3 ∨ ¬x4)
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Fig. 2. Example of encoding an instance of R3-Sat into an instance of MDH (proof
of Theorem 9). Each clause of the Boolean formula F is represented by a set in Cblue.
The sets in Cred and the maximum overlap k = 1 ensure that no two elements from S

that correspond to conflicting truth assignments of the same variable can be chosen
into a solution. Observe how S′ = {s1

1, s
1
2, s

2
3, s

3
4} (grey columns) constitutes a valid

solution to the MDH instance; accordingly, a truth assignment T which makes all
the corresponding literals evaluate to true satisfies F .

element corresponds to a positive literal xi, then T (xi) = true, satisfying the
clause. On the other hand, if the element corresponds to a negative literal ¬xi,
then T (xi) = false, satisfying the clause.

“⇐” Let T be a satisfying truth assignment for F . Let S ′ be the set of elements
in S that correspond to literals that evaluate to true under T . Then, S ′ has
the minimum overlap property because at least one literal in every clause
of F must evaluate to true under T and each set in Cblue represents exactly
one clause of F . Also, S ′ has the maximum overlap property with k = 1
because T is well-defined for every variable that occurs in F . Since S ′ has
both the minimum and maximum overlap property, it is a valid solution to
the MDH instance. 2

Theorem 10 MDH is NP-complete even if all of the following restrictions
apply:

(1) The collection Cblue has the consecutive ones property,
(2) k = 2,
(3) ∀C ∈ Cblue : |C| ≤ 2 and ∀C ∈ Cred : |C| ≤ 3, and
(4) ∀s ∈ S : |{C ∈ Cblue | s ∈ C}| = 1 and |{C ∈ Cred | s ∈ C}| ≤ 2.

PROOF. We prove the theorem by a reduction from R3-Sat. The reduction
is similar to the one used in the proof of Theorem 9, but this time we use the
sets of Cred instead of those of Cblue to model the clauses of F , and we use the
sets of Cblue to enforce the consistency between literals representing the same
variable. Moreover, in contrast to the reduction used in the proof of Theorem 9,
here each element chosen into the solution set—if a solution exists—stands for
a literal that is set to false by a satisfying truth assignment for F . Hence, not
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F = (x1 ∨ x2 ∨ ¬x3)

∧ (x3 ∨ x4)

∧ (¬x1 ∨ ¬x2)

∧ (¬x1 ∨ ¬x3 ∨ ¬x4)
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Fig. 3. Example of encoding an instance of R3-Sat into an instance of MDH
(proof of Theorem 10). Each clause of the Boolean formula F is represented by a
set in Cred. The sets in Cblue ensure that for each variable one element of the two
elements corresponding to its positive and negative literal is chosen into a solution;
the maximum overlap k = 2 ensures that for each clause at most two elements
corresponding to its literals are chosen. Observe how S′ = {s̄1, s2, s̄3, s4, s

c
1, s

c
2, s

c
3, s

c
4}

(grey columns) constitutes a valid solution to the MDH instance; accordingly, a
truth assignment T with T (xi) = true iff si 6∈ S′ satisfies F .

more than two elements per red set may be chosen into the solution set if
the corresponding truth assignment for F shall be satisfying; this is expressed
by setting k to two. In order to prevent both literals of a size-2 clause from
being set to false, we add to each set in Cred corresponding to a size-2 clause
a dummy element which has to be part of every solution.

The instance (S, Cblue, Cred, k) of MDH is constructed as follows:

• We set S := {s1, s̄1, . . . , sn, s̄n}∪{s
c
1, . . . , s

c
m}. Herein, n denotes the number

of variables in F and m denotes the number of clauses in F . For a variable xi

in F , si represents the literal xi and s̄i represents the literal ¬xi. We use
the elements sc

i to ensure that each set in Cred has size three.

• Cblue :=
(

⋃

1≤i≤n{{si, s̄i}}
)

∪ {{sc
1}, . . . , {s

c
m}}.

• For each clause c in F , Cred contains a set C of those elements from S that
represent the literals of c: If the j-th clause in F contains only two literals,
then sc

j is added to its representing set in Cred as the third element.
• The maximum overlap k is set to two.

See Figure 3 for an illustration of the construction. Clearly, this MDH in-
stance satisfies all restrictions as claimed by the theorem. The correspondence
between the solutions of the constructed instance and the satisfying truth
assignments for F follows from the following two observations.

First, if the constructed MDH instance is solvable, then it has always a so-
lution set S ′ such that, for each variable xi, exactly one of si and s̄i is in S ′.
This can easily be seen because if a solution set S ′ contains both of si and s̄i

for a variable xi, then S ′ without si (or S ′ without s̄i) is also a solution
for the MDH instance. This observation guarantees that we can always con-
struct a well-defined truth assignment for F from S ′ and vice versa as follows:
T (xi) = true⇔ si /∈ S ′.
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Second, F is satisfiable with a truth assignment T if and only if every clause of
size three has at most two literals that are evaluated to false by T and every
clause of size two has at most one literal that is evaluated to false. By the
correspondence between T and S ′, it is then easy to observe that T satisfies F
iff S ′ fulfills the maximum overlap property with k = 2, that is, S ′ meets, for
each clause c, the set in Cred corresponding to c at most twice. 2

4.1.2 Consecutive Ones Property for Cred

Note that by the reduction from Vertex Cover in Section 2, MDH is
NP-complete already if Cred contains just a single set and, hence, has the
C1P. However, this requires a non-fixed maximum overlap k and unrestricted
cardinality of the set contained in Cred. Therefore, if we want to show the
NP-completeness of MDH with the additional restriction that the maximum
overlap k is fixed and the sets in Cblue and Cred have small cardinality, another
reduction is needed. Analogously to Theorems 9 and 10, the following two
theorems impose different restrictions on the cardinalities of the sets in Cblue
and Cred.

Theorem 11 MDH is NP-complete even if all of the following restrictions
apply:

(1) The collection Cred has the consecutive ones property,
(2) k = 1,
(3) ∀C ∈ Cblue : |C| ≤ 3 and ∀C ∈ Cred : |C| ≤ 2, and
(4) ∀s ∈ S : |{C ∈ Cblue | s ∈ C}| ≤ 2 and |{C ∈ Cred | s ∈ C}| = 1.

PROOF. Again, we give a reduction from R3-Sat. For a given n-variable
Boolean formula F that is an instance of R3-Sat, construct the following
instance (S, Cblue, Cred, k) of MDH:

• The set S is equal to {s1, s̄1, . . . , sn, s̄n}, that is, for each variable xi in F ,
S contains an element si representing the literal xi and an element s̄i rep-
resenting the literal ¬xi.
• For each clause in F , Cblue contains a set of those elements from S that

represent the literals of that clause.
• Cred =

⋃

1≤i≤n{{si, s̄i}}.
• The maximum overlap k is set to one.

Observe that this MDH instance satisfies all restrictions claimed in the theo-
rem. The reduction is illustrated by an example in Figure 4. The correctness of
the reduction can be proven in a similar way as in the proof of Theorem 9. 2
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F = (x1 ∨ x2 ∨ ¬x3)

∧ (x3 ∨ x4)

∧ (¬x1 ∨ ¬x2)

∧ (¬x1 ∨ ¬x3 ∨ ¬x4)
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Fig. 4. Example of encoding an instance of R3-Sat into an instance of MDH
(proof of Theorem 11). Each clause of the Boolean formula F is encoded into one
set of Cblue. Observe how S′ = {s1, s̄2, s3, s̄4} (grey columns) constitutes a valid
solution to the MDH instance; accordingly, a truth assignment T with T (xi) = true
iff si ∈ S′ satisfies F .

Theorem 12 MDH is NP-complete even if all of the following restrictions
apply:

(1) The collection Cred has the consecutive ones property,
(2) k = 2,
(3) ∀C ∈ Cblue : |C| ≤ 2 and ∀C ∈ Cred : |C| ≤ 3, and
(4) ∀s ∈ S : |{C ∈ Cblue | s ∈ C}| ≤ 2 and |{C ∈ Cred | s ∈ C}| = 1.

PROOF. The reduction used in this proof is a combination of the reductions
used in the proofs of Theorems 9 and 10: We encode clauses and variables in a
similar way as in the proof of Theorem 9. But here clauses are encoded in Cred
and variables in Cblue. As in the proof of Theorem 10, each element chosen
into the solution set—if one exists—stands for a literal that is set to false by
a satisfying truth assignment for F .

• We set S := {s1
1, s

2
1, s

3
1, . . . , s

1
m, s2

m, s3
m}∪{s

c
1, . . . , s

c
m}. The element si

j repre-
sents the i-th literal in the j-th clause of F . If the j-th clause has only two
literals, then S contains only s1

j and s2
j . The elements sc

i are used to ensure
that each set in Cred has size three.
• For all variables x in F and for all pairs of literals l1 = x, l2 = ¬x in F : If l1

is the i-th literal in the j-th clause and l2 is the p-th literal in the q-th clause
of F , Cblue contains the set {si

j, s
p
q}. Moreover, we add {sc

i} with 1 ≤ i ≤ m
to Cblue.
• For each clause in F , Cred contains a set of those elements from S that

represent the literals of that clause. If the j-th clause in F contains only
two literals, then sc

j is added to the corresponding set in Cred as the third
element.
• The maximum overlap k is set to two.

An example of the reduction is shown in Figure 5. The correctness of the
reduction can be proven in a similar way as in the proof of Theorem 10. 2
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F = (x1 ∨ x2 ∨ ¬x3)
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Fig. 5. Example of encoding an instance of R3-Sat into an instance of MDH
(proof of Theorem 12). Each clause of the Boolean formula F is represented by
a set in Cred. Observe how S′ = {s2

1, s
3
1, s

c
1, s

2
2, s

c
2, s

1
3, s

c
3, s

1
4, s

2
4, s

c
4} (grey columns)

constitutes a valid solution to the MDH instance; accordingly, a truth assignment T

which makes all the literals not corresponding to one of the chosen elements evaluate
to true satisfies F .

4.2 Red-Blue Set Cover with Partial C1P

The problem Red-Blue Set Cover has been introduced by Carr et al. [7];
here we use the problem definition given in Section 1. We will show the NP-
completeness of RBSC when restricted to instances where the sets in Cblue or
the sets in Cred have the C1P.

Theorem 13 RBSC is NP-complete even if

(1) |C| ≤ 2 for all C ∈ Cblue, |C| = 1 for all C ∈ Cred (which trivially
implies that Cred has the consecutive ones property), and for all s ∈ S,
|{C ∈ Cblue | s ∈ C}| ≤ 3 and |{C ∈ Cred | s ∈ C}| = 1, or

(2) the collection Cblue has the consecutive ones property, |C| ≤ 2 for all C ∈
Cblue, |C| ≤ 3 for all C ∈ Cred, and for all s ∈ S, |{C ∈ Cblue | s ∈ C}| = 1
and |{C ∈ Cred | s ∈ C}| = 1.

PROOF. We show both cases of the theorem by reductions from Vertex
Cover restricted to cubic graphs. Vertex Cover restricted to cubic graphs
is NP-hard [16].

To prove Case (1), let G = (V,E) be a cubic graph. For the reduction, set S :=
V , Cblue := E, and Cred := {{v} | v ∈ V }. Clearly, the constructed instance
satisfies all restrictions of this case. The one-to-one correspondence between
the solutions follows directly from the construction.

To show Case (2), let G = (V,E) be a cubic graph with V = {v1, v2, . . . , vn}
and E = {e1, e2, . . . , em}. Construct the following instance (S, Cblue, Cred, k) of
RBSC:
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• S := {si
l, s

j
l | el = {vi, vj} ∈ E}, that is, S contains, for every edge el, two

elements corresponding to el’s endpoints.
• Cblue := {{si

l, s
j
l } | el = {vi, vj} ∈ E}.

• For every vertex vi ∈ V we add to Cred a set Ci consisting of three vi’s
“occurrences.” More precisely, si

l ∈ Ci for an edge el with vi as one endpoint.

Since the sets in Cblue are pairwise disjoint, Cblue has the consecutive ones
property. The other restrictions of this case are also clearly satisfied.

It is easy to see that G has a vertex cover with at most k vertices iff the con-
structed RBSC-instance has a solution with maximum containment k: Given
a vertex cover V ′ of G, the RBSC-instance has a solution S ′ := ∪vi∈V ′Ci;
Conversely, given a solution S ′ of the RBSC-instance, the set V ′ := {vi |
Ci ∩ S ′ 6= ∅, Ci ∈ Cred} is clearly a size-≤ k vertex cover of G. 2

The restriction on the cardinality of Cblue-sets in Case (1) of Theorem 13 is
clearly tight: For cardinality-one Cblue-sets we have only one choice, that is,
taking the element into the solution.

Finally, we mention in passing that our reduction also implies that RBSC as
restricted above can only be approximated up to a constant factor, that is, it is
MaxSNP-hard [29]. This is due to the fact that the reductions in the proof of
Theorem 13 are clearly approximation-preserving reductions. Thus, the claim
follows from the fact that Vertex Cover restricted to cubic graphs still is
MaxSNP-hard [29].

5 Outlook

There are many natural challenges for future work. For instance, it is desir-
able to find out more about the polynomial-time approximability [2,34] and
the parameterized complexity [12,15,27] of the variants of Minimum Degree
Hypergraph and Red-Blue Set Cover proven to be NP-complete. More-
over, the connections to orthogonal segment stabbing [21] in computational
geometry should be further explored.
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